1,135 research outputs found

    Catalogue of Anti-Patterns for formal Ontology debugging

    Get PDF
    Debugging of inconsistent OWL ontologies is normally a tedious and time-consuming task where a combination of ontology engineers and domain expert is often required to understand whether the changes to be performed in order to make the OWL ontology consistent are actually changing the intended meaning of the original knowledge model. This task is aided by existing ontology debugging systems, incorporated in existing reasoners and ontology engineering tools, which ameliorate this problem but in complex cases are still far from providing adequate support to ontology engineers, due to lack of efficiency or lack of precision in determining the main causes for inconsistencies. In this paper we describe a set of anti-patterns commonly found in OWL ontologies, which can be useful in the task of ontology debugging in combination with those debugging tools

    Detection of the onset of nanocrystallization by calorimetric and magnetic measurements

    Get PDF
    It is generally accepted that measurements of the magnetic properties are more sensitive than measurements of the enthalpy changes in the detection of the onset of crystallization of ferromagnetic phases emerging from a paramagnetic amorphous alloy. In this work, it is shown that the formation of a very fine nanocrystalline microstructure can make this assumption incorrect. Under some circumstances, the nanocrystallization onset temperature obtained from magnetic techniques is higher than the one obtained from enthalpy changes. The phenomenon is explained in terms of the superparamagnetic behavior of the uncoupled nanocrystals at the very early stages of nanocrystallizatio

    The role of stellar radial motions in shaping galaxy surface brightness profiles

    Get PDF
    Aims. The physics driving features such as breaks observed in galaxy surface brightness (SB) profiles remains contentious. Here, we assess the importance of stellar radial motions in shaping their characteristics. Methods. We use the simulated Milky Way-mass cosmological discs from the Ramses Disc Environment Study (RaDES) to characterise the radial redistribution of stars in galaxies displaying type-I (pure exponentials), II (downbending), and III (upbending) SB profiles. We compare radial profiles of the mass fractions and the velocity dispersions of different sub-populations of stars according to their birth and current location. Results. Radial redistribution of stars is important in all galaxies regardless of their light profiles. Type-II breaks seem to be a consequence of the combined effects of outward-moving and accreted stars. The former produce shallower inner profiles (lack of stars in the inner disc) and accumulate material around the break radius and beyond, strengthening the break; the latter can weaken or even convert the break into a pure exponential. Further accretion from satellites can concentrate material in the outermost parts, leading to type-III breaks that can coexist with type-II breaks, but situated further out. Type-III galaxies would be the result of an important radial redistribution of material throughout the entire disc, as well as a concentration of accreted material in the outskirts. In addition, type-III galaxies display the most efficient radial redistribution and the largest number of accreted stars, followed by type-I and II systems, suggesting that type-I galaxies may be an intermediate case between types-II and III. In general, the velocity dispersion profiles of all galaxies tend to flatten or even increase around the locations where the breaks are found. The age and metallicity profiles are also affected, exhibiting different inner gradients depending on their SB profile, being steeper in the case of type-II systems (as found observationally). The steep type-II profiles might be inherent to their formation rather than acquired via radial redistribution

    Evidence for intermediate-age stellar populations in early-type galaxies from K-band spectroscopy

    Get PDF
    The study of stellar populations in early-type galaxies in different environments is a powerful tool for constraining their star formation histories. This study has been traditionally restricted to the optical range, where dwarfs around the turn-off and stars at the base of the RGB dominate the integrated light at all ages. The near-infrared spectral range is especially interesting since in the presence of an intermediate-age population, AGB stars are the main contributors. In this letter, we measure the near-infrared indices NaI and DCO_{\rm CO} for a sample of 12 early-type galaxies in low density environments and compare them with the Fornax galaxy sample presented by Silva et al. (2008). The analysis of these indices in combination with Lick/IDS indices in the optical range reveals i) the NaI index is a metallicity indicator as good as C4668 in the optical range, and ii) DCO_{\rm CO} is a tracer of intermediate-age stellar populations. We find that low-mass galaxies in low density environments show higher NaI and DCO_{\rm CO} than those located in Fornax cluster, which points towards a late stage of star formation for the galaxies in less dense environments, in agreement with results from other studies using independent methods.Comment: 7 pages, 3 figures, accepted for publication in ApJ

    On the Environmental Dependence of Cluster Galaxy Assembly Timescale

    Get PDF
    We present estimates of CN and Mg overabundances with respect to Fe for early-type galaxies in 8 clusters over a range of richness and morphology. Spectra were taken from the Sloan Digital Sky Survey (SDSS) DR1, and from WHT and CAHA observations. Abundances were derived from absorption lines and single burst population models, by comparing galaxy spectra with appropriately broadened synthetic model spectra. We detect correlations between [Mg/CN] and [CN/Fe] and cluster X-ray luminosity. No correlation is observed for [Mg/Fe]. We also see a clear trend with the richness and morphology of the clusters. This is interpreted given varying formation timescales for CN, Mg and Fe, and a varying star formation history in early-type galaxies as a function of their environment: intermediate-mass early-type galaxies in more massive clusters are assembled on shorter timescales than in less massive clusters, with an upper limit of ~1 Gyr.Comment: Accepted for publication in ApJ Letter

    Melanin-binding colorants: updating molecular modeling, staining and labeling mechanisms, and biomedical perspectives

    Full text link
    Melanin and melanoma tumors are two fields of increasing interest in biomedical research. Melanins are ubiquitous biopigments with adaptive value and multiple functions, and occur in the malignant melanoma. Although several chemical structures have been proposed for eumelanin, molecular modeling and orbitals indicate that a planar or spiral benzoquinone-porphycene polymer would be the model that better explains the broad-band light and ultrasound absorption, electric conductivity, and graphite-like organization shown by X-ray crystallography and electron microscopy. Lysosomes and melanosomes are selectively labeled by vital probes, and melanin also binds to metal cations, colorants, and drugs, with important consequences in pharmacology, pathology, and melanoma therapy. In addition to traditional and recent oncologic treatments, photodynamic, photothermal, and ultrasound protocols represent novel modalities for melanoma therapy. Since eumelanin is practically the ideal photothermal and ultrasound sensitizer, the vibrational decay from photo-excited electrons after NIR irradiation, or the electrochemical production of ROS and radicals after ultrasound absorption, induce an efficient heating or oxidative response, resulting in the damage and death of tumor cells. This allows repetitive treatments due to the remaining melanin contained in tumoral melanophages. Given that evolution and prognosis of the advanced melanoma is still a concern, new biophysical procedures based on melanin properties can now be developed and applie

    Pattern-based OWL Ontology Debugging Guidelines

    Full text link
    Debugging inconsistent OWL ontologies is a tedious and time-consuming task where a combination of ontology engineers and domain experts is often required to understand whether the changes to be performed are actually dealing with formalisation errors or changing the intended meaning of the original knowledge model. Debugging services from existing ontology engineering tools and debugging strategies available in the literature aid in this task. However, in complex cases they are still far from providing adequate support to ontology developers, due to their lack of efficiency or precision when explaining the main causes for unsatisfiable classes, together with little support for proposing solutions for them. We claim that it is possible to provide additional support to ontology developers, based on the identification of common antipatterns and a debugging strategy, which can be combined with the use of existing tools in order to make this task more effective

    Combination of DROOL rules and Protégé knowledge bases in the ONTO-H annotation tool

    Get PDF
    ONTO-H is a semi-automatic collaborative tool for the semantic annotation of documents, built as a Protégé 3.0 tab plug-in. Among its multiple functionalities aimed at easing the document annotation process, ONTO-H uses a rule-based system to create cascading annotations out from a single drag and drop operation from a part of a document into an already existing concept or instance of the domain ontology being used for annotation. It also gives support to the detection of name conflicts and instance duplications in the creation of the annotations. The rule system runs on top of the open source rule engine DROOLS and is connected to the domain ontology used for annotation by means of an ad-hoc programmed Java proxy

    Thermomagnetic detection of recrystallization in FeCoNbBCu nanocrystalline alloys

    Get PDF
    The recrystallization process in FeCoNbBCu nanocrystallinealloys is evidenced from thermomagnetic results as a significant decrease in magnetization at the second crystallization stage. The lowering in the volume fraction of α-FeCo crystals indicates that some of these crystals contribute to the boride phases formed. Electron microscopy images reveal that the final microstructure consists of large crystals (∼500 nm) of a fcc (FeCo)23B6(FeCo)23B6 phase and small crystals (∼20 nm) of bcc α-FeCo and of some boride phases as such (FeCo)2B
    corecore